The Llama 4 Herd – Open Source Won?

Estimated read time 1 min read

Post Content

 

​ Llama-4 Scout and Mevrick

LINKS:
https://www.llama.com/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://x.com/lmarena_ai/status/1908601011989782976/photo/1
https://x.com/AIatMeta/status/1908618302676697317
https://x.com/Ahmad_Al_Dahle/status/1908595680828154198
https://x.com/maximelabonne/status/1908602756182745506
https://x.com/togethercompute/status/1908616685315383439/photo/1
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://console.groq.com/playground?model=meta-llama/llama-4-scout-17b-16e-instruct

RAG Beyond Basics Course:
https://prompt-s-site.thinkific.com/courses/rag

Let’s Connect:
🦾 Discord: https://discord.com/invite/t4eYQRUcXB
☕ Buy me a Coffee: https://ko-fi.com/promptengineering
|🔴 Patreon: https://www.patreon.com/PromptEngineering
💼Consulting: https://calendly.com/engineerprompt/consulting-call
📧 Business Contact: engineerprompt@gmail.com
Become Member: http://tinyurl.com/y5h28s6h

💻 Pre-configured localGPT VM: https://bit.ly/localGPT (use Code: PromptEngineering for 50% off).

Signup for Newsletter, localgpt:
https://tally.so/r/3y9bb0

00:00 Introduction and Overview
02:22 Exploring the LAMA Models
05:12 Performance and Benchmarks
07:36 Capabilities and Use Cases
12:24 Licensing and Accessibility
15:10 Conclusion and Final Thoughts   Read More Prompt Engineering 

#AI #promptengineering

You May Also Like

More From Author